

Next Generation 3D Printer

Fahad Alahmari, Sebastian Arevalo, Brad Evans, Tomas Garcia, Ben Gouveia, Jake Work Department of Mechanical Engineering

Apr 29, 2016

Overview

- Introduction
- Project Need and Goal
- Objectives
- Constraints
- 3D Printer Functions
- Preliminary vs Final Design

- Fabrication
- Electronics
- Current Assembly
- Performance Testing
- Bill of Materials
- Conclusions

Introduction

- Client: Novakinetics
 - Aerospace composite parts
 - Parts are made with molds
- What can be done to decrease production time, while maintaining product quality?

Novakinetics.com

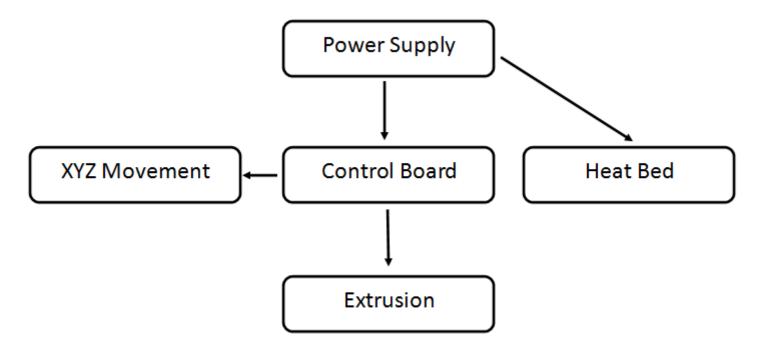
Needs and Project Goal

- Needs Statement
 - Novakinetic's lead time for composite parts is currently too long and for a more efficient manufacturing process
- Project Goal
 - Develop a large scale 3D printer that can be used to speed up the manufacturing process at Novakinetics

3D Printing

- Fused Deposition Modeling (FDM)
- Objects are built layer by layer
- Common materials used
 - Acrylonitrile Butadiene Styrene (ABS)
 - Polylactic Acid (PLA)

fundable.com


Objectives

OBJECTIVE	MEASUREMENT	UNITS
Fast Print Speed	Filament / Time	mm/s
Accuracy	Length	mm
Maintenance	Time	Hours/Week
Safe to Operate	OSHA Unitless	
Ease of Use	Time to Proficiency Hours	
Economic	Cost	US Dollars

Constraints

- Part thickness > 1.25mm
- Surface dimension tolerance of ±0.8mm
- Resolution < 0.5mm
- Print volume $\geq 0.216m^3$ (0.6m x 0.6m x 0.6m)
- Power use ≤ 480V, 200A

Functional Diagram

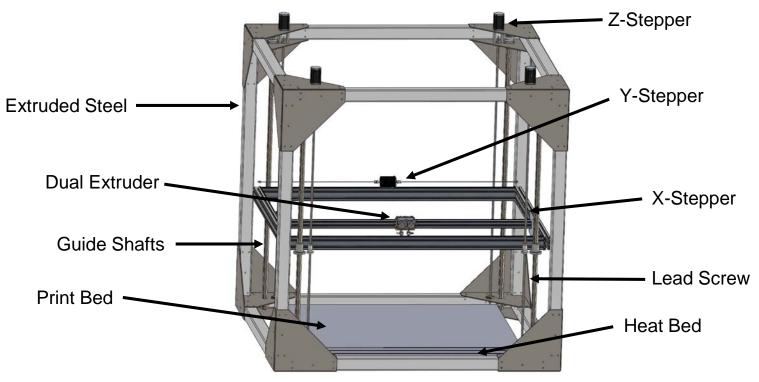
Criteria of Functions

Power Supply

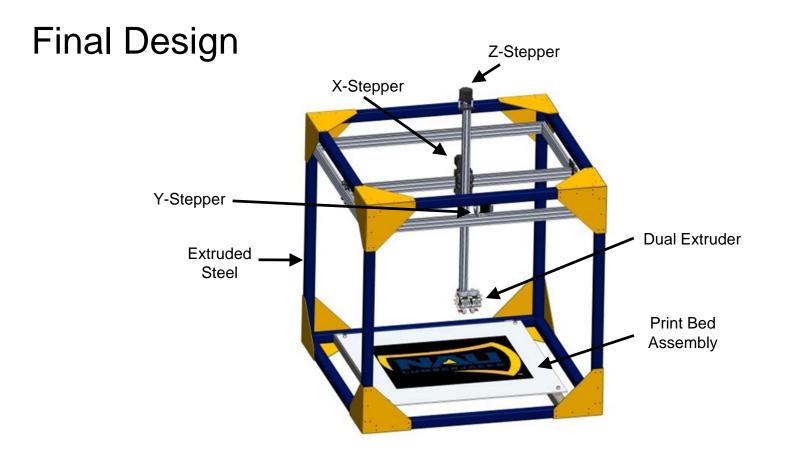
- 1. Ease of Implementation
- 2. 120V-240V
- 3. Cost

Extruder

- 1. Temperature
- 2. Nozzle Size
- 3. Reliability

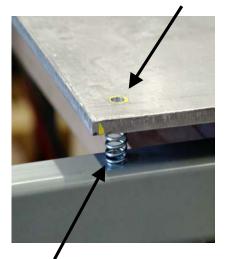

Control Board

- 1. Open Source
- 2. Multiple Motor Drivers
- 3. Modular


XYZ Movement

- 1. Torque
- 2. Resolution
- 3. Rotations Per Minute (RPM)

Preliminary Design

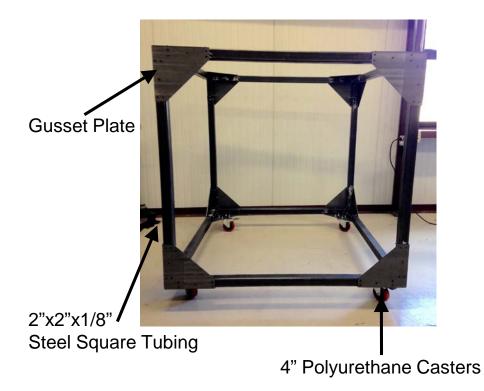


The Print Bed

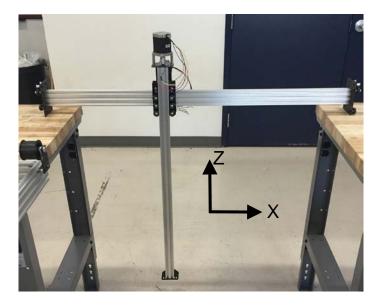
$\frac{1}{2}$ inch holes

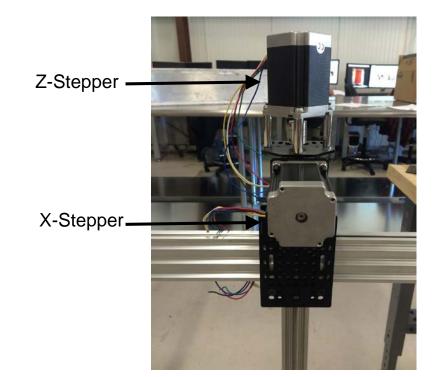
Compression Springs

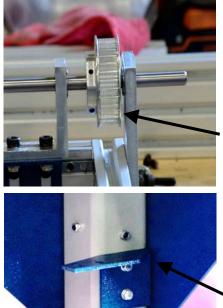
24 x 36 inch Heat Bed



38 x 38 x ¾ inch 6061 Aluminum


The Frame




The Gantry

The Gantry

Pulley

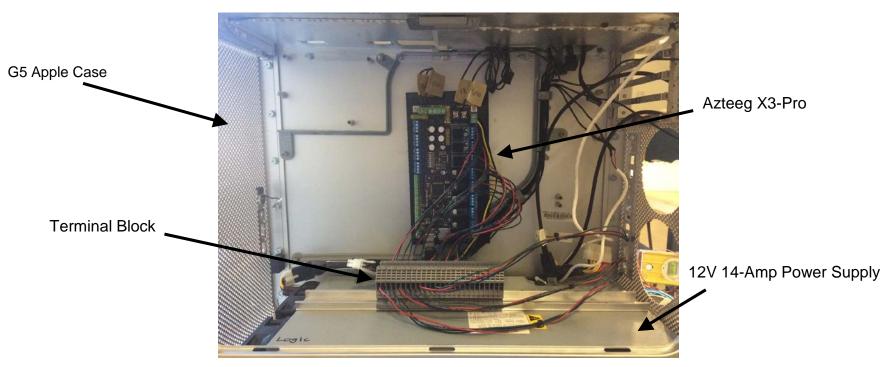
Gantry Support Bracket

Gantry X & Y Frame

Computer Shelf and Filament Holder

\bigcirc

Electronics: Programming


- Repetier Host installed on control PC
- Repetier Firmware Installed on Azteeg X3 Pro
- Calibration
 - Calculated Steps/mm for X&Y axis

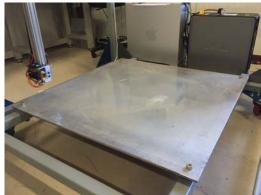
 $\frac{\text{steps}}{\text{mm}} = \frac{\text{motor steps per rev} * \text{driver microstep}}{\text{belt pitch} * \text{pulley number of teeth}}$

o Calculated Steps/mm for Z axis

steps _	motor steps per rev*driver microste	
mm _	thread pitch	

Electronics: Control System

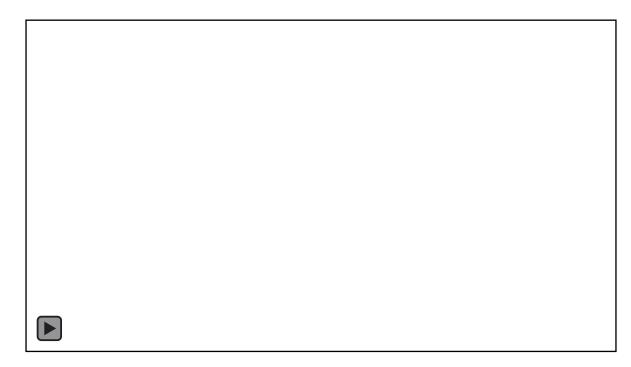
Design Modifications:


Address Vibrations

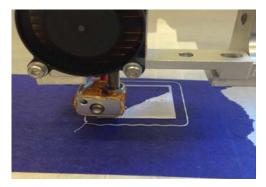
Increase torque resistance by changing the x-axis bar cross section from 20mm x 60mm to 40mm x 40mm

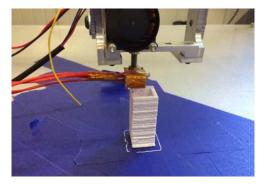
Address Warped Print Bed

Increase surface flatness by adding thermally stable epoxy to self level the print bed

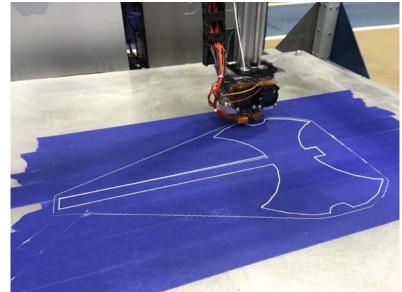


Completed Assembly




Performance Testing


Performance Testing



Performance Testing

Bill of Materials

Section	Cost
Frame	\$409.08
Gantry	\$1098.25
Print Bed	\$889.88
Electrical	\$754.24
Powder Coating	\$300.00
Miscellaneous	\$590.21
TOTAL:	\$4041.66

Conclusions

- Novakinetics is seeking a new way to manufacture their products
- The team determined that a large scale 3D printer can be used to speed up their manufacturing process
- Individual components of the 3D printer were selected based on research, functional diagrams and relative weight matrices
- With components selected, the team created a CAD model and Bill of Materials(BOM) of the design
- Using the CAD model and B.O.M. parts were ordered and the manufacturing, programming, and assembly process of the 3D printer began

Conclusions

- The manufacturing process of the 3D Printer was broken up into 6 sections: the print bed, frame, gantry, electronics, computer shelf, and filament holder,
- During manufacturing, design modifications included leveling of the print bed and modification of the x-axis bar
- With the 3D printer assembled, performance testing began
- The final cost of the printer came out to \$4041.66

Acknowledgements

Novakinetics Aerosystems

• Jim Corning & Chuck Hebestreit

Page Steel

Desert Metal Works

Joe Davidson

Chris Hyzin and Chris Temme

Machine Shop Staff

Dr. Srinivas Kosaraju

Dr. Sarah Oman

References

[1] Bigrep.com, 'BigRep | Large Scale 3D Printing', 2015. [Online]. Available: http://bigrep.com/bigrepone/. [Accessed: 19- Sep- 2015].

[2]B. Millsaps, 'Kloner 240TWIN 3D Printer', 3DPrint.com, 2015. [Online]. Available: http://3dprint.com/63633/kloner-3d-240twin/. [Accessed: 20- Sep- 2015].

[3] Horvath, Joan C. Mastering 3D Printing: Modeling, Printing, and Prototyping with Reprap-style 3D Printers. N.p.: n.p., n.d. Print.

[4] Norton, Robert L. Design of Machinery: An Introduction to the Synthesis and Analysis of Mechanisms and Machines. Boston: McGraw-Hill Higher Education, 2008. Print.

[5] Novakinetics.com, 'Composite Manufacturing Products', 2015. [Online]. Available: http://www.novakinetics.com/. [Accessed: 20- Sep- 2015].

[6] Ugural, A. C. Mechanics of Materials. Hoboken, NJ: J. Wiley & Sons, 2008. Print.

Questions?

